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Abstract. Self-consistent techniques, such as the linearized augmented plane wave (LAPW)
and surface embedding Green function (SEGF) methods, frequently yield calculated quantities
which show damped oscillatory behaviour as a function of the number of specialk-points. In
the present work, the oscillatory dependence has been fitted to a damped harmonic oscillator in
order to approximate the value corresponding to an infinite number ofk-points in the Brillouin
zone. The asymptotic value, amplitude, frequency, and phase are determined as functions of the
damping constant by matching the value and derivative of the damped harmonic oscillator at
consecutive turning points. It is shown that the asymptotic value of the damped oscillator may
fall within the rms error of the asymptotic value of the fitting function. Results are reported for
the surface relaxations and work functions of Al(001) and Be(0001).

1. Introduction

Density functional theory relates an interacting system to a non-interacting system of the
same charge density subject to a modified potential. The charge density is usually obtained
by summing contributions from all occupied states of the system; for an infinite system, an
integration over the infinite number of states in the occupied portion of the Brillouin zone is
required. The general practice has been to replace the BZ integral by a weighted sum using
sets of specialk-points and weights in such a way as to minimize the approximation error.
However, when only a single set ofk-points is used, there is no simple way of predicting
how close the calculated finite-k results are to the (actual) infinite-k asymptotic values.

Surface embedding Green function studies (incorporating LAPW basis functions) of
physical quantities such as the work function, force, and surface relaxation show similar
damped oscillatory behaviour with the number of specialk-points. Such arbitrary damped
oscillatory functions can be fitted to a harmonic oscillator by means of a general technique
outlined in section 2. (A detailed explanation of the method is given in the appendix.) Once
the results for the first few sets of specialk-points have been fitted to damped harmonic
oscillators, the infinite-k asymptotic values can be predicted. In section 3, the method is
applied to the Al(001) and Be(0001) surfaces, and comparisons with other theoretical and
experimental work are presented.

2. Theory

Self-consistent techniques often yield calculated quantities which show damped oscillatory
behaviour as a function of the number of specialk-points. Leth(x) be an arbitrary damped
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oscillatory function whose asymptotic value isC. To approximateC (corresponding to an
infinite number ofk-points in the Brillouin zone), it is desirable to fith(x) to a damped
harmonic oscillator of the form

g(x) = A+ B e−αx cos(ωx + β). (1)

The asymptotic value of the fitting function,A, is then the approximate asymptotic value
of the calculated quantity. The method described below assumes that the oscillatory, but not
necessarily periodic, functionh(x) is known on an interval which contains two consecutive
turning points,xj andxj+1. That is

x ∈ Xj = [xj − ε`, xj+1+ εr ] (2)

whereε` andεr are small compared toxj − xj+1.
A damped harmonic oscillator has five parameters that can be adjusted freely to fit the

function of interest. These are the asymptotic value (A), the amplitude (B), the damping
constant (α), the frequency (ω), and the phase shift (β). The asymptotic value, amplitude,
frequency, and phase shift are fixed by matching the value and derivative of the function
to be fitted at two consecutive turning points.

The fitting procedure leads to the following expression for the asymptotic value of the
damped harmonic oscillator:

Aj(αj , {λi}) = h(xj )− h(xj )− h(xj+1)

1+ e−αjπ/ωj ({λi })
(3)

whereh(xj ) and h(xj+1) are the values at the two turning points. (For details, see the
appendix.)Aj is thus the approximate infinite-k asymptotic value ofh(x).

To obtain some sense of how well the asymptotic value of the damped harmonic
oscillator approximates the asymptotic value of the oscillatory functionh(x), the method
proceeds as follows. First, the fact that succeeding turning points are nearer to the asymptotic
value limits the range ofC. It must lie between the average value of the two turning points
and the value at the second point. That is,

C ∈ Yj =
[
h(xj+1),

h(xj )+ h(xj+1)

2

)
whenh(xj ) > h(xj+1) (4)

or

C ∈ Yj =
(
h(xj )+ h(xj+1)

2
, h(xj+1)

]
whenh(xj ) < h(xj+1). (5)

The error interval may be further reduced by fittingg(x) to h(x) over several intervals.
It is shown in the appendix that the rms difference per interval decreases asx increases for
subsequent intervals. Thus, the rms difference evaluated over the first interval is greater
than the rms interval evaluated over the entire range—andC must lie in the intersection of
all error intervals (A33). For other details of the method, please see the appendix.

3. Applications

The approximation technique outlined in section 2 and described in the appendix has been
applied to the work function and surface relaxation of the Al(001) and Be(0001) surfaces.
The surface embedded Green function (SEGF) method [1, 2] has been used to obtain the
charge densities of both surfaces. The SEGF method employs LAPW basis functions and
the full potential, with no shape approximation, in the surface region. Surface layers are
embedded directly onto an infinite bulk substrate by means of an embedding potential
derived from the bulk Green function.
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3.1. Al(001)

The calculations were performed using Monkhorst and Pack’s specialk-point sets for a
square lattice [3]. The variablex is defined in such a way that consecutive sets of special
k-points are separated by unity. The lower bound of the first interval,X1, is set to zero.
The functions(x, {λi}) is defined as in the appendix ((A11) and following).

3.1.1. Work function. Seven values of the work function were obtained using the 6-, 10-,
15-, 21-, 28-, 36- and 45-special-k-point sets. The dependence of the work function onx

is depicted in figure 1. It is seen that the work function behaves in an oscillatory manner
ash(x). The intervalX1 (with j equal to one) is taken asX1 = [0, 5]. The locations of
the turning points,x1 andx2, are approximated by Lagrange interpolation as 1.01 and 1.32,
respectively.

Figure 1. The dependence of the Al(001) work function onx.

The damping constant,̃α1(λ), that minimizes the rms difference for an arbitraryλ
was obtained; the rms differences for theλ were then compared. Figure 2 shows the
λ-dependence of the rms difference,r̃1[α̃1(λ), λ], and the asymptotic value of the fitting
function, A1[α̃(λ), λ]. The power ofx that leads to a minimum rms difference,λ̃, is
approximately 0.9. The corresponding rms difference,r̃1[α̃1(λ̃), λ̃], was calculated to be
0.007 eV. Thus, theZ1 error interval is given byZ1 = [4.428, 4.442] eV. The values of the
work function at the turning points,h(x1) andh(x2), as obtained by Lagrange interpolation
are 4.474 and 4.397 eV, respectively. Hence, theY1 error interval isY1 = [4.397, 4.436) eV.

The error interval for the work function,C, is the intersection of theZ1 andY1 intervals:
C ∈ [4.428, 4.436) eV. The calculated work function is determined to be 4.432 eV, with an
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Figure 2. The dependence of the rms difference (error bars) and asymptotic value of the fitting
function (crosses) on the power ofx.

error interval of only 0.1%. The corresponding experimental error interval is [4.38, 4.44] eV
[4]. Thus, the theoretical interval is well within the experimental interval.

Two important phenomena can be observed in figure 2. First, a deviation from the
optimal power,λ̃ = 0.9, results in an increase in the rms difference. The error interval
increases, although the limiting value ofC is retained. The same phenomenon was observed
in the calculated surface relaxation of Al(001) and the work function of Be(0001). A similar
conclusion also applies to the surface relaxation of Be(0001) when the intersection withZ1

is considered.
Second, the asymptotic value corresponding to the optimal power,A1[α̃1(λ̃), λ̃], is

stationary with respect to variations in the power. This phenomenon was also observed in
the work function and surface relaxation calculations of Al(001) and Be(0001).

3.1.2. Surface relaxation.Since experiment predicts almost no relaxation for the Al(001)
surface, the subsurface layers were assumed to be fixed with the bulk inter-layer spacing.
Only the spacing between the outermost and second layer was allowed to vary. The surface
force acting on the outermost layer was calculated for two different spacings. The surface
relaxation was determined by assuming a linear dependence of the force on the spacing.

Surface relaxations were determined for seven specialk-point sets, consisting of 6, 10,
15, 21, 28, 36, and 45k-points. Figure 3 shows the dependence of the surface relaxation on
x. (The surface relaxation was calculated as the ratio of the deviation from the unrelaxed
position to the bulk inter-layer separation.)
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Figure 3. The dependence of the Al(001) surface relaxation onx.

The intervalX1 was taken to beX1 = [0, 4]. The optimal power was 0.9—identical
to that obtained for the work function. TheZ1 and Y1 intervals were calculated to be
Z1 = [−0.86,−0.54]% andY1 = [−1.42,−0.69)%. The uncertainty interval for the surface
relaxation,C, the intersection of these two intervals, is given byC ∈ [−0.86,−0.69)%.
This is fairly close to the experimental result of 0% (no experimental error interval has been
cited) [5].

3.2. Be(0001)

The calculations were performed using Cunningham’s specialk-points for a hexagonal
lattice [6]. Five values of the work function and surface relaxation were obtained,
corresponding to 3-, 6-, 18-, 36-, and 108-specialk-point sets. The variablex was defined
such that consecutive specialk-point sets were spaced by unity. The lower bound of the
intervalX1 was set to zero.

3.2.1. Work function. Figure 4 illustrates the oscillatory behaviour of the calculated work
function. The intervalX1 was taken to beX1 = [0, 4]. The optimal power was found
to be 1.0. TheZ1 andY1 intervals were found to be [5.21, 5.33] eV and [4.58, 5.29) eV,
respectively. The work function uncertainty interval, [5.21, 5.29) eV, is the intersection of
these two intervals. The calculated interval is somewhat outside the experimental interval
of [5.08, 5.12] eV [7].
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Figure 4. The dependence of the Be(0001) work function onx.

3.2.2. Surface relaxation.Because experiment predicts almost no relaxation of the
subsurface layers, the surface relaxation for the top layer was calculated by keeping the
lower layers fixed at the bulk inter-layer spacing. The force acting on the top layer was
calculated for two different positions of the surface for each set of specialk-points. The
surface relaxation was then determined by assuming a linear dependence of the force on
inter-layer spacing. From figure 5 it is apparent that the surface relaxation behaves in
an oscillatory manner. The optimal value of the power was found to be 1.0—the same
value as for the work function. TheZ1 and Y1 intervals were found to be [−0.5, 6.3]%
and [−3.2, 3.9)%, respectively. Thus, the calculated uncertainty interval is [−0.5, 3.9)%.
Again, the calculated result is somewhat outside the experimental interval of [5.4, 6.2]%
[8]. This appreciable expansion of Be(0001) is considered to be anomalous, since most
close-packed surfaces show little, if any, expansion.

4. Conclusion

A general method of evaluating the infinite-k representation of various calculated quantities
has been presented. Applications of the method to two test surfaces have been successful,
in that agreement with experiment has been good to excellent. The error intervals obtained
were generally narrow. Although these calculations were performed with the SEGF method,
the technique can be applied to other methods which employ specialk-point sets.
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Figure 5. The dependence of the Be(0001) surface relaxation onx.

Appendix

Let h(x) be an arbitrary damped oscillatory function such that forj = 1, 2, 3, . . .

lim
x→∞h(x) = C (A1)

[C − h(xj )][C − h(xj+1)] < 0 (A2)

and

|C − h(xj )| > |C − h(xj+1)| (A3)

wherexj andxj+1 satisfy the conditions

dh(x)

dx

∣∣∣∣
x=xj
= 0 (A4)

dh(x)

dx

∣∣∣∣
x=xj+1

= 0 (A5)

and
dh(x)

dx

∣∣∣∣
x∈(xj ,xj+1)

6= 0. (A6)

That is,xj andxj+1 are consecutive turning points, andC is the limiting value ofh(x). Let
the values ofh(x) be known only for the values ofx such that

x ∈ Xj = [xj − ε`, xj+1+ εr ] (A7)

whereε` andεr are small compared toxj − xj+1.
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Inequalities (A2) and (A3) constrainC to be in one of two intervals:

C ∈ Yj =
[
h(xj+1),

h(xj )+ h(xj+1)

2

)
whenh(xj ) > h(xj+1) (A8)

or

C ∈ Yj =
(
h(xj )+ h(xj+1)

2
, h(xj+1)

]
whenh(xj ) < h(xj+1). (A9)

Let g(x) be a damped harmonic oscillator(α > 0) given by

g(x) = A+ B e−αx cos(ωx + β). (A10)

The aim is to reduce the error interval by fittingg(x) to h(x) over the known interval.
Although the turning points ofg(x) are equally spaced, those ofh(x) may not be. However,
a monotonically increasing functions(x) can be defined such that the functionp(x) defined
by

p[s(x)] = h(x)
or

p(x) = h[s−1(x)] (A11)

does have turning points which are uniformly spaced.
Let s(x) depend onx through the parameters{λi} ≡ λ1, λ2, . . . , λn, i.e., where the{λi}

are chosen to minimize the difference betweeng[s(x)] andp[s(x)]. Parameters are chosen
such thatg[s(x)] andh(x) match atxj andxj+1, and dg[s(x)]/ dx vanishes atxj andxj+1.

These conditions result in the following expressions forωj , βj , Bj andAj :

ωj({λi}) = π

s(xj+1, {λi})− s(xj , {λi}) (A12)

βj (αj , {λi}) = −ωj({λi})s(xj , {λi})+ tan−1

( −αj
ωj ({λi})

)
+ (j − 1)π (A13)

Bj(αj , {λi}) = h(xj )− h(xj+1)

cos
[
tan−1(−αj/ωj ({λi}))+ (j − 1)π

] {e−αj s(xj ,{λi }) + e−αj s(xj+1,{λi })} (A14)

and

Aj(αj , {λi}) = h(xj )− h(xj )− h(xj+1)

1+ e−αjπ/ωj ({λi })
. (A15)

From (A15) it can be seen thatAj(αj , {λi}) ∈ Yj for all αj ∈ (0,∞] for a given set{λi}.
Thus, there exists añαj ∈ (0,∞] such thatAj(α̃j , {λ}) = C. This α̃j can be approximated
as theαj which minimizes the difference betweenp[s(x, {λi})] and gj [s(x, {λi})] in the
interval Sj = [sj , sj+1], wheresj = s(xj − ε`, {λi}) andsj+1 = s(xj+1 + εr , {λi}). The rms
difference between the two functions can be used as a measure of the error. Thusα̃j is
chosen such that

drj (αj , {λi})
dαj

∣∣∣∣
αj=α̃j

= 0 (A16)

where

rj (αj , {λi}) =
∫ sj+1

sj

{p[(x, {λi})] − gj [s(x, {λi}), αj , {λi}]}2 ds(x, {λi}). (A17)
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Condition (A16) results in the following transcendental equation forα̃j :∫ sj+1

sj

ds(x, {λi}) {p[s(x, {λi})] − gj [s(x, λi), α̃j , {λi}]}

×dgj [s(x, {λi}), γj (αj , {λi}), {λi}]
dγj (αj , {λi})

∣∣∣∣
αj=α̃j

= 0 (A18)

whereγj = e−αjπ/ωj ({λi }).
The advantage of switching fromαj to γj is that, in solving the transcendental

equation (A18), it is easier to look forγj in the finite range [0,1), than it is for̃αj ∈ (0,∞].
This is possible because∂γj (αj , {λi})/∂αj 6= 0. If h(x) is known only for a few values of
x, then the integrals in (A17) and (A18) must be replaced by summations.

The rms difference, (A17), can be further minimized by choosing{λi} such that
drj / dλk|λk=λ̃k = 0, for k = 1 to n.

Next, consider the value ofIj defined by

Ij = rj (α̃j , {λ̃i})−
∫ sj+1+π/ω

sj+1

{p[s(x, {λ̃i})] − g[s(x, {λ̃i}), α̃j ]}2 ds(x, {λ̃i}). (A19)

From (A10) one obtains

g[s(x, {λ̃i}), α̃j ] − Aj(γ̃j ) = −γ̃j {g[s(x, {λ̃i})− π/ωj , α̃j )] − Aj(γ̃j )} (A20)

whereγ̃j = γj (α̃j , {λ̃i}).
With the {λ̃i} chosen by minimizing the rms difference, andsk in close conformity

with yk (the turning points of the approximating functions) such that [dgj (x)/ dx]|x=yk = 0,
δC(x) ∈ (0, 1] is defined by

p[s(x, {λ̃i})] − C = −δC(x){p[s(x, {λ̃i})− π/ωj ] − C}. (A21)

Then

p[s(x, {λ̃i})] − Aj(γ̃j ) = −δA(x){p[s(x, {λ̃i})− π/ωj ] − Aj(γ̃j )} (A22)

whereδA(x) ∼= δC(x)+1δC(x). To first order

1δC(x) ∼= ∂δC(x, C)

∂C
(Aj (γ̃j )− C) = (1+ δC(x)) C − Aj(γ̃j )

p[s(x, {λi})− π/ωj ] − C . (A23)

Using (A20) and (A22), (A19) can be transformed into

Ij =
∫ sj+1

sj

{[p̃(x)− g̃j (x)]2− [δA(x)p̃(x)− γ̃ g̃j (x)]2} ds(x, {λ̃i}) (A24)

wherep̃(x) = p(x, {λ̃i})− Aj(γ̃j ) and g̃j (x) = gj [s(x, {λ̃i}), α̃j ] − Ãj (γ̃j ).
For a givenx, the integrand of (A24) is greater than zero if

δA(x) ∈ Wj =
(
γ̃ − (1+ γ̃j ) |p̃(x)− g̃j (x)||g̃j (x)| , γ̃ + (1+ γ̃j ) |p̃(x)− g̃j (x)||g̃j (x)|

)
. (A25)

For the ideal case where the functions are identical,δ(x) = γ̃j as expected.
If |p̃(x)− g̃j (x)| is approximated by the rms difference, andg̃j (x) is evaluated atxj (to

obtain the smallest possible interval), then (A25) simplifies to

Wj ⊇
(
γ̃j − r̃j (1+ γ̃j )2
|g̃j (xj )− g̃j (xj+1)| , γ̃j +

r̃j (1+ γ̃j )2
|g̃j (xj )− g̃j (xj+1)|

)
(A26)

wherer̃j = {rj (α̃j , {λ̃i})/(sj+1− sj )}1/2.
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Now, if δA(x) ∈ Wj for mostx, it follows from (A19) thatIj > 0. Thus, asx increases
the mean square difference per interval decreases. Consequently,

r̃j > lim
L→∞

{
1

L− sj

∫ L

sj

[p(s(x, {λ̃i}))− gj (s(x, {λ̃i}), α̃j )]2 ds(x, {λ̃i})
}1/2

= r̃∞. (A27)

A direct expansion of the integrand leads to

r̃2
∞ = [Aj(γ̃j )− C]2+ 2[C − Aj(γ̃j )] lim

L→∞
1

L− sj

∫ L

sj

[p̂(x)− g̃j (x)] ds(x, {λ̃i})

+ lim
L→∞

1

L− sj

∫ L

sj

[p̂(x)− g̃j (x)]2 ds(x, {λ̃i}) (A28)

where p̂(x) = p[s(x, {λ̃i})] − C. Since the integrands in the second and third terms
approach zero asx approaches infinity, the corresponding integrals behave like constants as
L approaches infinity. As a result, the second and third terms of (A28) vanish. Therefore,
it follows that

C = Aj(γ̃j )± r̃∞. (A29)

Equation (A15) implies that

1Aj(δA) ∼= g̃j (xj )− gj (xj+1)

(1+ γ̃j )2 (δA − γ̃j ). (A30)

Then, with|1Aj(δ)| ∼= r̃j ,
Aj(δA) ∈ Zj = (Aj (γ̃j )− r̃j , Aj (γ̃j )+ r̃j )⇒
δA ∈ Vj =

(
γ̃j − r̃j (1+ γ̃j )2
|gj (xj )− gj (xj+1)| , γ̃j +

r̃j (1+ γ̃j )2
|gj (xj )− gj (xj+1)|

)
. (A31)

SinceVj ⊆ Wj , δA falls within the intervalWj . Therefore, (A27) and (A29) are appropriate
for our damped harmonic oscillator, and they ensure the existence ofC in Zj , the rms error
interval ofAj(γ̃j ).

If Zj 6⊂ Yj , the error interval can be reduced further because

C ∈ Yj ∩ Zj . (A32)

If h(x) is known over an interval containing more than two turning points (sayN ), the
error interval can be reduced, since

C ∈
j+N−2⋂
m=j
{Ym ∩ Zm}. (A33)

Since many calculated physical quantities behave likeh(x) as a function of the number
of specialk-points, intervals (A32) and (A33) are valid error intervals for the infinite-k
representation of the system.
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